If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2+12z+9=0
a = 2; b = 12; c = +9;
Δ = b2-4ac
Δ = 122-4·2·9
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{2}}{2*2}=\frac{-12-6\sqrt{2}}{4} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{2}}{2*2}=\frac{-12+6\sqrt{2}}{4} $
| 4=3x^2-13x | | 6a-18-(3a)-1=4a-2 | | F(x)=-2+3x | | 4(a-6)-6=6 | | 2k^2-3k-20=0 | | 4(a-8)+6=6 | | 3y+15-4y-8=-2y+10 | | 8x+6+2=-4x+1 | | 3n-7=38 | | 2(m+5)=6m-8 | | −5x+56=9x | | 2x-7=40-3x | | −5x+56=9 | | 3y-1/4=2y-3/6 | | 38(7-2.5x)=12(2x-11)+52.9 | | 2x+20=4x-17 | | (x+2)(x-4)=x²-1 | | 2(m-4)-3=3(m-7) | | 60*x=80*(X-80/60) | | 9x-33=6x-6 | | 60*x=(x-80/60) | | 5(x-4)=-3(x+1)+19 | | c^2+2c-c^2-6c=10c-12 | | 6x-29=3x-5 | | 6x29=3x-5 | | 5/3x-2=1/2x-2/3 | | 142q=5.62q+11.2 | | Y=-5/16(x+8)(x-8) | | x+4=-4-3x | | n2=1.5 | | n2= 1.5 | | P(142)=5.62q+11.2 |